Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 20(1): 30-59, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20349829

RESUMO

Atmospheric nitrogen (N) deposition is a recognized threat to plant diversity in temperate and northern parts of Europe and North America. This paper assesses evidence from field experiments for N deposition effects and thresholds for terrestrial plant diversity protection across a latitudinal range of main categories of ecosystems, from arctic and boreal systems to tropical forests. Current thinking on the mechanisms of N deposition effects on plant diversity, the global distribution of G200 ecoregions, and current and future (2030) estimates of atmospheric N-deposition rates are then used to identify the risks to plant diversity in all major ecosystem types now and in the future. This synthesis paper clearly shows that N accumulation is the main driver of changes to species composition across the whole range of different ecosystem types by driving the competitive interactions that lead to composition change and/or making conditions unfavorable for some species. Other effects such as direct toxicity of nitrogen gases and aerosols, long-term negative effects of increased ammonium and ammonia availability, soil-mediated effects of acidification, and secondary stress and disturbance are more ecosystem- and site-specific and often play a supporting role. N deposition effects in mediterranean ecosystems have now been identified, leading to a first estimate of an effect threshold. Importantly, ecosystems thought of as not N limited, such as tropical and subtropical systems, may be more vulnerable in the regeneration phase, in situations where heterogeneity in N availability is reduced by atmospheric N deposition, on sandy soils, or in montane areas. Critical loads are effect thresholds for N deposition, and the critical load concept has helped European governments make progress toward reducing N loads on sensitive ecosystems. More needs to be done in Europe and North America, especially for the more sensitive ecosystem types, including several ecosystems of high conservation importance. The results of this assessment show that the vulnerable regions outside Europe and North America which have not received enough attention are ecoregions in eastern and southern Asia (China, India), an important part of the mediterranean ecoregion (California, southern Europe), and in the coming decades several subtropical and tropical parts of Latin America and Africa. Reductions in plant diversity by increased atmospheric N deposition may be more widespread than first thought, and more targeted studies are required in low background areas, especially in the G200 ecoregions.


Assuntos
Biodiversidade , Nitrogênio/química , Nitrogênio/metabolismo , Plantas/classificação , Plantas/metabolismo , Meio Ambiente , Monitoramento Ambiental , Fixação de Nitrogênio
2.
Environ Pollut ; 146(3): 736-43, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16781803

RESUMO

Using published data on the responses of individual species to ozone, 54 EUNIS (European Nature Information System) level 4 communities with six or more ozone-sensitive species (%OS) and c. 20% or more species tested for ozone sensitivity, were identified as potentially ozone-sensitive. The largest number of these communities (23) was associated with Grasslands, with Heathland, scrub and tundra, and Mires, bogs and fens having the next highest representation at 11 and 8 level 4 communities each respectively. Within the grasslands classification, E4 (Alpine and sub-alpine grasslands), E5 (Woodland fringes and clearings) and E1 (Dry grasslands) were the most sensitive with 68.1, 51.6 and 48.6%OS respectively. It is feasible to map the land-cover for these and other communities at level 2, but it may not be currently possible to map the land-cover for all communities identified to be ozone-sensitive at levels 3 and 4.


Assuntos
Oxidantes Fotoquímicos/toxicidade , Ozônio/toxicidade , Plantas/efeitos dos fármacos , Altitude , Biodiversidade , Clima , Ecossistema , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental/métodos , Europa (Continente) , Concentração de Íons de Hidrogênio , Poaceae/efeitos dos fármacos , Medição de Risco/métodos , Solo , Árvores/efeitos dos fármacos , Água , Áreas Alagadas
3.
Ambio ; 30(1): 20-8, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11351789

RESUMO

Acidification represents a growing threat to certain developing country ecosystems in tropical and subtropical climates. A methodology investigating the extent of acidification risks from sulfur emissions on a global scale is presented. Atmospheric transfer models have been used to calculate transfer and deposition of sulfur (using emissions for 1990 and a projection for 2050) and alkaline soil dust. A method to derive the relative sensitivity of terrestrial ecosystems is explained and preliminary critical load values are assigned. A range of values for critical loads and base cation deposition have been used to investigate uncertainty in maps depicting the excess of deposition above critical loads. These show an increasing risk of acidification in 2050 in extended regions of southern and eastern Asia, as well as parts of southern Africa, in comparison to 1990. Certain areas, especially in Asia, are shown at risk even when high values of critical load and base cation deposition are used.


Assuntos
Ácidos , Poluentes Atmosféricos , Ecossistema , Modelos Químicos , Enxofre , Países em Desenvolvimento , Humanos , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...